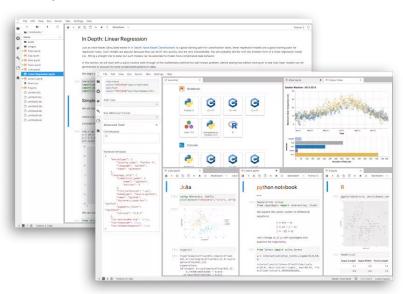
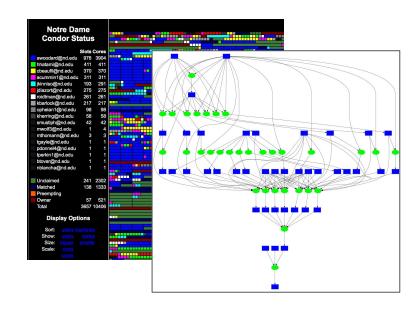


Wrangling Complex Notebook Workflows with Floability

Douglas Thain, on behalf of the Floability team:

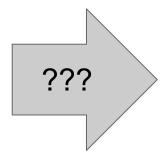

Saiful Islam, Talha Aziz, Shahadat Hossain, Raza Ahmad, Furquan Baig, Tanu Malik, Kevin Lannon, Shaowen Wang

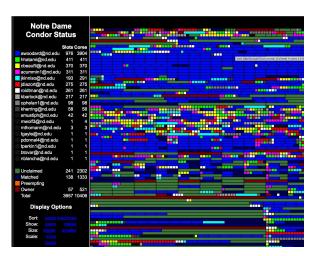
Throughput Computing 2025 Madison, WI July 2024



Two Different Worlds of Computing?

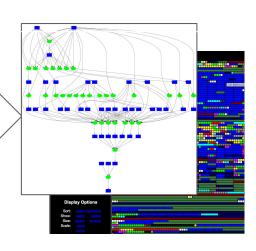
Interactive Notebooks
Graphical, Interactive, Personal, Limited


High Throughput Workflows Scripting, Batch, Shared, Scalable



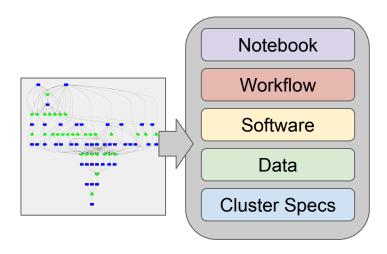
Nobody* Starts with High Throughput!

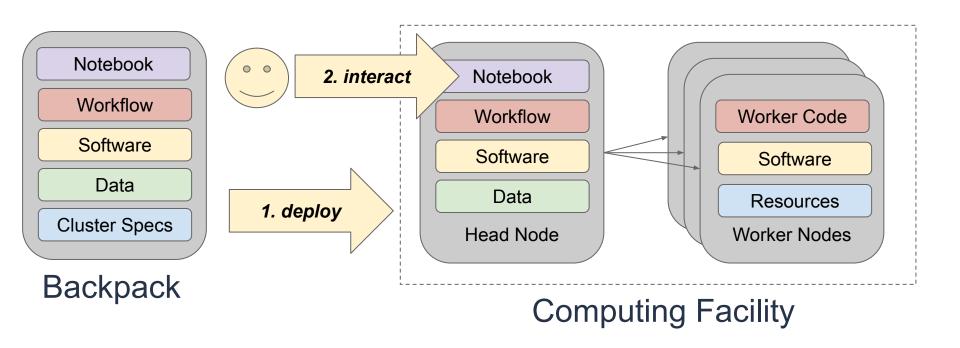
They begin by writing Python in a notebook on the laptop. And then they share and publish that notebook with others. After a while... they bump up against the limits of one node.



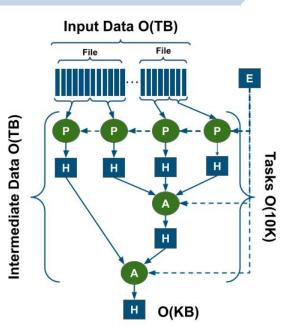
The **Floability Project** aims to enable the rapid and portable deployment of notebooks expressing complex scientific workflows across a wide range of cyberinfrastructure.

CSSI Frameworks: From Notebook to Workflow and Back Again



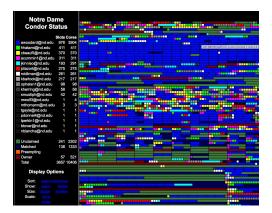

You cannot deploy a notebook workflow effectively without all the supporting environment.

A **backpack** contains everything needed to deploy a notebook workflow at large scale.


Floability deploys a **backpack** into a facility.

Example: DV5 CMS Analysis Application

http://dx.doi.org/10.1109/SC41406.2024.00068



Kevin Lannon

Connor Moore

Consumes 1.5TB Data Submits 17K Tasks Uses 2400 cores, 200 nodes.

Example: Surface Ocean Heat (CESM2)

https://github.com/floability/floability-examples/tree/main/cesm oceanheat

Setting Dask Schedulers to Use DaskVine

```
import ndcctools.taskvine as vine
from functools import partial
import os

m = vine.DaskVine(
    [9123, 9500],
    name=f"{os.environ.get("VINE_MANAGER_NAME")}",
)

vine_scheduler = partial(m.get, progress_disable = True)

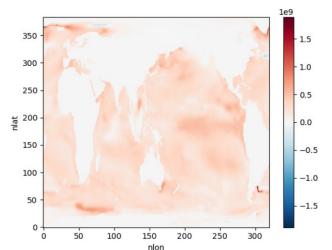
dask.config.set(scheduler=vine_scheduler)
```

Data: CESM2 LENS 1850-2100

Tasks: 2800+ parallel jobs

Tools: Xarray + Dask/TaskVine

Notebook Size: 1.3 MB Backpack Size: 1.5 MB


Has the surface ocean heat content increased with time for January?

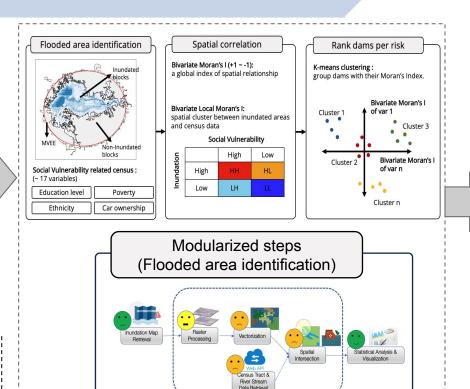
```
hist_ocean_avgheat_ano = hist_ocean_avgheat.isel(time=1) - hist_ocean_avgheat.i

**time
hist_ocean_avgheat_ano.plot()

CPU times: user 4.77 s, sys: 932 ms, total: 5.7 s
Wall time: 53.6 s
```

<matplotlib.collections.QuadMesh at 0x7f78f3f69f70>

Harsha Hampapura

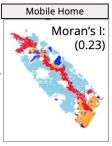


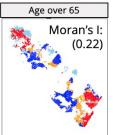
Example: Aging Dams Simulation Workflow

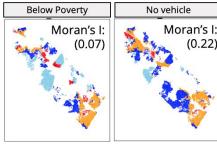
https://github.com/floability/floability-cli/tree/distributed-iguide-gis-aging-dams/example/iguide-gis-aging-gis-agi

Analyze Downstream Impacts of Dam Failures to Critical Infrastructure. Vulnerable Populations & **Ecosystems**

Backpack captured but not distributed (yet)


I-GUIDE Geospatial Understanding through an Integrative Discovery Environment




Furguan Baig

Shaowen Wang

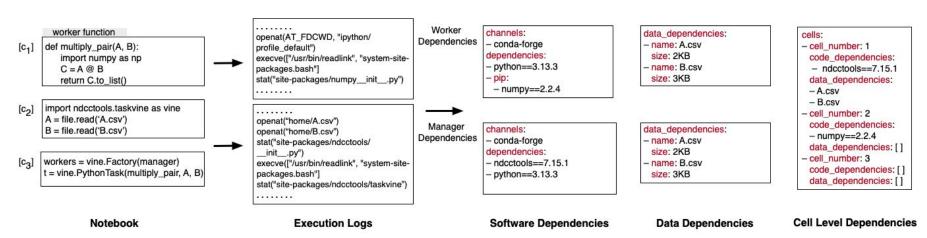
(0.22)

- → workflow
 - cms-physics-dv5.ipynb
- → software
 - environment.yml
 - worker-environment.yml
- → data
 - data.yml
 - samples/qcd/.../nano_mc2017_11.root
 - ◆ samples/diboson/.../nanomc2017_6.root
- compute
 - ◆ compute.yml

- → workflow
 - cms-physics-dv5.ipynb
- → software
 - environment.yml
 - worker-environment.yml
- → data
 - data.yml
 - samples/qcd/.../nano_mc2017_11
 - samples/diboson/.../nanomc2017
- → compute
 - compute.yml

```
'ef analysis(events):
   warnings.filterwarnings("ignore", module="coffea.*"
   dataset = events.metadata["dataset"]
  events["PFCands", "pt"] = events.PFCands.pt * event
   cut to fix softdrop = ak.num(events.FatJet.constitu
   events = events[ak.all(cut_to_fix_softdrop, axis=1)
   trigger = ak.zeros_like(ak.firsts(events.FatJet.pt)
   for t in triggers["2017"]:
       if t in events.HLT.fields:
           trigger = trigger | events.HLT[t]
   trigger = ak.fill_none(trigger, False)
   events["FatJet", "num_fatjets"] = ak.num(events.Fat
   goodmuon = (
       (events.Muon.pt > 10)
       & (abs(events.Muon.eta) < 2.4)
       & (events.Muon.pfRelIso04 all < 0.25)
       & events.Muon.looseId
   nmuons = ak.sum(goodmuon, axis=1)
```

- → workflow
 - cms-physics-dv5.ipynb
- → software
 - environment.yml
 - worker-environment.yml
- → data
 - data.yml
 - samples/qcd/.../nano_mc2017_11.
 - samples/diboson/.../nanomc2017
- → compute
 - ◆ compute.yml


1	name: my_mdv5_env
7	
3	channels:
4	- conda-forge
5	
6	dependencies:
7	- python=3.12
8	- cloudpickle
9	ndcctools
10	- coffea<2024.4.2
11	- dask<2024.5.2
12	<pre>- dask-awkward<2024.5.0</pre>
13	- dask-core<2024.5.0
14	<pre>- dask-histogram<2024.5.0</pre>
15	- fsspec
16	- pip:
17	<pre>- fastjet<3.4.2.2</pre>

- → workflow
 - cms-physics-dv5.ipynb
- software
 - environment.yml
 - worker-environment.yml
- → data
 - data.yml
 - samples/qcd/.../nano_mc2017_11.root
 - samples/diboson/.../nanomc2017_6.rd
- → compute
 - ◆ compute.yml

```
41
       - conda-forge::pytz==2025.2
42
       - conda-forge::rich==14.0.0
43
       - conda-forge::scipy==1.15.2
44
       - conda-forge::setuptools==78.1.0
45
       - conda-forge::tblib==3.1.0
       - conda-forge::toolz==1.0.0
46
47
       - conda-forge::tqdm==4.67.1
       - conda-forge::uhi==0.5.0
48
49
       - conda-forge::uproot==5.6.0
50
       - conda-forge::wheel==0.45.1
       - conda-forge::xxhash==0.8.3
51
52
       - conda-forge::yaml==0.2.5
       - conda-forge::zstandard==0.23.0
53
54
       - pip = 25.0.1
       - python==3.12.10
       - pip:
57
         - debugpy==1.8.14
         - fastjet==3.4.2.1
         - ipython-pygments-lexers==1.1.1
         - ipython==9.1.0
         - jsonschema==4.23.0
         - jupyter-client==8.6.3
         - jupyter-core==5.7.2
         - matplotlib-inline==0.1.7
         - nbformat==5.10.4
         - vector==1.6.1
```

How do you find software/data deps?

Use the **SciUnit** technology to instrument a running notebook to observe the Python dependencies of the manager/worker.

Fils, Gabriel, Zhihao Yuan, and Tanu Malik. "Sciunits: Reusable research objects." In 2017 IEEE 13th International Conference on e-Science (e-Science), pp. 374-383. IEEE, 2017.

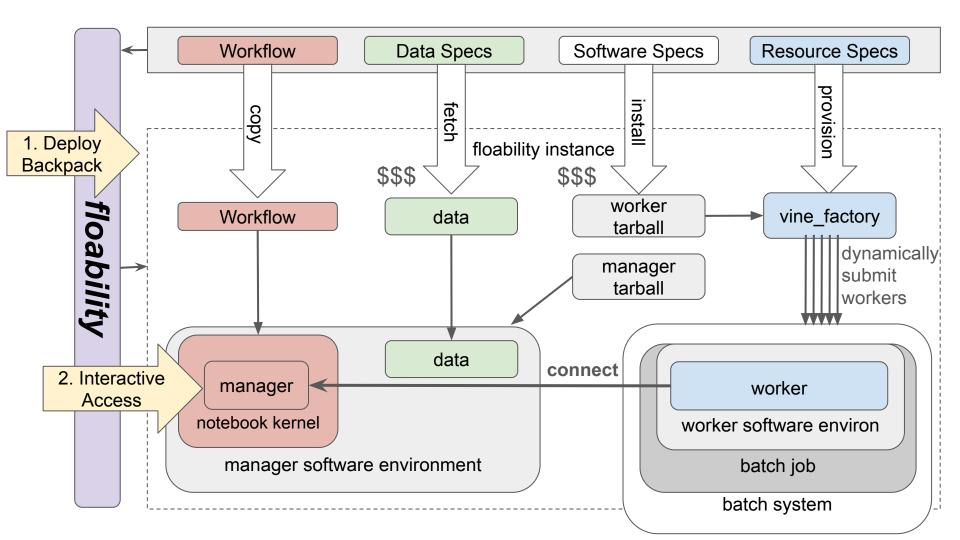
https://github.com/floability/floability-examples/tree/main/cms-physics-dv5

```
data:
workflow
                                 - name: "diboson zz 6"
                                   source type: "backpack"
    cms-physics-
                                   source: "data/samples/diboson/zz/nano_mc2017_6.root"
software
                                   target location: "data/samples/diboson/zz/nano mc2017 6.root"
     environment.
                                 - name: "diboson zz 9"
     worker-envir
                                   source_type: "backpack"
data
                                   source: "data/samples/diboson/zz/nano_mc2017_9.root"
                                   target_location: "data/samples/diboson/zz/nano_mc2017_9.root"
     data.yml
```

samples/qcd/.../nano_mc2017_11.root
samples/diboson/.../nanomc2017_6.root

- → compute
 - ◆ compute.yml

Opportunity to connect Pelican!



https://github.com/floability/floability-examples/tree/main/cms-physics-dv5

workflow cms-physics-dv5.ipynb software environment.yml worker-environment.yml data data.yml samples/qcd/.../nano mc2017 samples/diboson/.../nanomc20 compute

compute.yml

```
vine_factory_config:
min-workers: 2
max-workers: 400
cores: 4
memory: 1024
disk: 2000
```


Deployment is a Work in Progress

Workflow	ND CRC	Purdue Anvil	UT Stampede3	AWS Cluster	OSPool		
DV5	V	V	V	V			
DConv	V	V	V	V			
CTrend	V	V	V	V			
CESM Ocean Heat	V	V	V	V			
Montage	V						

https://github.com/floability/floability-examples

Deployment to Multiple Sites: floability run

Workflow	Metric	ND CRC		Purdue Anvil		UT Stampede3		AWS Cluster	
		First	Repeat	First	Repeat	First	Repeat	First	Repeat
**	Total Runtime	292	136	744	255	684	330	216	88
DConv	Env Creation (M + W)	132	0	516	0	307	0	107	0
	Env Extraction	26	29	36	39	116	116	26	26
	Notebook Execution	116	98	174	198	229	171	66	51
	Total Runtime	265	107	1052	304	405	201	302	216
CTrend	Env Creation (M + W)	159	0	763	0	217	0	133	0
	Env Extraction	30	29	44	44	97	90	30	32
	Notebook Execution	57	64	225	240	75	101	127	172
DV5	Total Runtime	370	70	1212	281	827	218	500	89
	Env Creation (M + W)	303	0	973	0	598	0	242	0
	Env Extraction	28	29	43	44	105	83	29	37
	Notebook Execution	25	28	172	217	103	115	215	40

Overall Project Status:

- Year one of a four year translational project.
- MVP of the Floability tool is published via Conda:
 - conda install -c conda-forge floability
- Currently gathering and testing applications at multiple sites.
 - OSPool Need to be able to connect from worker to manager.
- Looking for applications and (brave) initial users.

Looking Ahead to New Challenges

- Estimate and Encapsulate "Whole Workflow" Requirements
 - Find more ways to say NO prior to execution: available disk space, worker capacity, network utilization, cluster architecture...
- Reconciling Interactive and Batch Allocation
 - The interactive allocation is not useful without the batch allocation, and vice versa. Both have limited capacity to be managed!
- Capture Site Specializations
 - Every facility is a snowflake. Can we capture functional differences (network, storage, policy) between facilities in a constructive way?
- Exploit Concurrency in Notebook Structure
 - Instead of writing in a parallel framework, can we infer independent tasks from the cell structure itself?

floability.github.io

conda install -c conda-forge floability

This work was supported in part by NSF grant 2411436 CSSI Frameworks: From Notebook to Workflow and Back Again

Prof. Douglas Thain Principal Investigator University of Notre Dame

Prof. Tanu Malik co-Pl University of Missouri

Prof. Kevin Lannon co-Pl University of Notre Dame

Prof. Shaowen Wang co-Pl University of Illinois

Md Saiful Islam Ph.D. Student University of Notre Dame

Talha Azaz MS. Student DePaul University

Ben Tovar
Research Software
Engineer
University of Notre
Dame

Hossain
Ph.D. Student
University of Missouri

Raza Ahmad Ph.D. Student DePaul University

Pr. Furqan Baig
Research Programmer
University of Illinois
Urbana Champaign